
Further
Graphics

Bezier Curves
and Surfaces

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
1

CAD, CAM, and a new motivation:
shiny things

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.

2

The drive for smooth CAD/CAM

● Continuity (smooth curves) can
be essential to the perception of
quality.

● The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

● Bezier (Renault) and de Casteljau
(Citroen) invented Bezier curves
in the 1960s. de Boor (GM)
generalized them to B-splines.

3

History
The term spline comes from
the shipbuilding industry: long,
thin strips of wood or metal
would be bent and held in
place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by Cn-continuous
Hermite polynomials which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

4

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Beziers cubic
● A Bezier cubic is a function P(t) defined

by four control points:

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● P0 and P3 are the endpoints of the curve
● P1 and P2 define the other two corners of

the bounding polygon.
● The curve fits entirely within the convex

hull of P0...P3.

P0

P1 P2

P3

5

Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P0 + tP1

● Quadratic: P(t) = (1-t)2P0 + 2t(1-t)P1 + t2P2

● Cubic: P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

...

General:
“n choose i” = n! / i!(n-i)!

6

Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P0) + (t) (P1)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P0+tP1) + (t) ((1-t)P1+tP2)
● The cubic is a linear interpolation between linear interpolations between

linear interpolations… etc.
● Another way to see Beziers is as a weighted average

between the control points.

P0

P1

P2
(1-t)P0+tP1

(1-t)P1+tP2

P(t)

7

Bernstein polynomials

P(t) = (1-t)3P0 + 3t(1-t)2P1 + 3t2(1-t)P2 + t3P3

● The four control functions are the four Bernstein
polynomials for n=3.

• General form:
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1:

8

Drawing a Bezier cubic:
Iterative method

Fixed-step iteration:
● Draw as a set of short line segments equispaced in

parameter space, t:

● Problems:
○ Cannot fix a number of segments that is appropriate for all

possible Beziers: too many or too few segments
○ distance in real space, (x,y), is not linearly related to distance in

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

9

Drawing a Bezier cubic
...but not very well

∆t=0.2 ∆t=0.1 ∆t=0.05

10

Drawing a Bezier cubic:
Adaptive method

● Subdivision:
● check if a straight line between P0 and P3 is an

adequate approximation to the Bezier
● if so: draw the straight line
● if not: divide the Bezier into two halves, each a

Bezier, and repeat for the two new Beziers
● Need to specify some tolerance for when a

straight line is an adequate approximation
● when the Bezier lies within half a pixel width

of the straight line along its entire length

11

Drawing a Bezier cubic:
Adaptive method (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve
 IF Flat(curve) THEN
 DrawLine(curve)
 ELSE
 SubdivideCurve(curve, left, right)
 DrawCurve(left)
 DrawCurve(right)
 END IF
END DrawCurve

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3,
then...

...draw a line from P0
to P3; otherwise,

...split the curve into two
Beziers covering the first and
second halves of the original
and draw recursively

12

Checking for flatness

P(t) = (1-t) A + t B
AB ⋅ CP(t) = 0
→ (xB - xA)(xP - xC) + (yB - yA)(yP - yC) = 0
→ t = (xB-xA)(xC-xA)+(yB-yA)(yC-yA)

 (xB-xA)2+(yB-yA)2

→ t = AB⋅ AC
 |AB|2

Careful! If t < 0 or t > 1,
use |AC| or |BC| respectively.

A

C

B
P(t)

we need to know
this distance

13

Subdividing a Bezier cubic in two

To split a Bezier cubic into two smaller Bezier cubics:

These cubics will lie atop the halves of their parent exactly,
so rendering them = rendering the parent.

Q0 = P0

Q1 = ½ P0 + ½ P1

Q2 = ¼ P0 + ½ P1 + ¼ P2

Q3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R3 = ⅛ P0 + ⅜ P1 + ⅜ P2 + ⅛ P3

R2 = ¼ P1 + ½ P2 + ¼ P3

R1 = ½ P2 + ½ P3

R0 = P3

14

Drawing a Bezier cubic:
Signed Distance Fields

1. Iterative implementation
SDF(P) = min(distance from P to each of n
line segments)
● In the demo, 50 steps suffices

2. Adaptive implementation
SDF(P) = min(distance to each sub-curve
whose bounding box contains P)
● Can fast-discard sub-curves whose

bbox doesn’t contain P
● In the demo, 25 subdivisions suffices

15

Overhauser’s cubic

Overhauser’s cubic: a Bezier cubic which passes through
four target data points
● Calculate the appropriate Bezier control point locations

from the given data points
● e.g. given points A, B, C, D, the Bezier control points are:
● P0 = B P1 = B + (C-A)/6
● P3 = C P2 = C - (D-B)/6

● Overhauser’s cubic interpolates its controlling points
● good for animation, movies; less for CAD/CAM
● moving a single point modifies four adjacent curve segments
● compare with Bezier, where moving a single point modifies just

the two segments connected to that point

16

● each curve is smooth within itself
● joins at endpoints can be:

● C1 – continuous in both position and tangent vector
● smooth join in a mathematical sense

● G1 – continuous in position, tangent vector in same direction
● smooth join in a geometric sense

● C0 – continuous in position only
● “corner”

● discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction” to
its vector on either side of the join

Cn ⇒ Gn

Types of curve join P3

Q0

17

C1 – continuous in position &
tangent vector

C
1

G1 – continuous in
position & tangent
direction, but not
tangent magnitude

G
1

C0 – continuous in
position only

C
0

18

Joining Bezier splines

● To join two Bezier splines with C0
continuity, set P3=Q0.

● To join two Bezier splines with C1
continuity, require C0 and make the tangent
vectors equal: set P3=Q0 and P3-P2=Q1-Q0.

P3
Q0

Q1

P2
19

What if we want to chain Beziers together?

Consider a chain of splines with
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain
over t by saying that instead of
going from 0 to 1, t moves
smoothly through the intervals
[0,1,2,3]

The curve C(t) would be:
 C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0)

[0,1,2,3] is a type of knot vector.
0, 1, 2, and 3 are the knots.

P3

Q0

Q1

P2

Q3

Q2

R1

R0

20

B-Splines and NURBS
1. A Bezier cubic is a polynomial of degree three: it must have four control

points, it must begin at the first and end at the fourth, and it assumes that all
four control points are equally important.

2. B-spline curves are a piecewise parameterization of a series of splines, that
supports an arbitrary number of control points and lets you specify the
degree of the polynomial which interpolates them.

3. NURBS (“Non-Uniform Rational B-Splines”) are a generalization of Beziers.
● NU: Non-Uniform. The knots in the knot vector are not required to be

uniformly spaced.
● R: Rational. The spline may be defined by rational polynomials

(homogeneous coordinates.)
● BS: B-Spline. A generalized Bezier spline with controllable degree.

21

The Bezier patch defined by sixteen control points,
P0,0 … P0,3
⋮ ⋮
P3,0 … P3,3

is:

Compare this to the 2D version:

Bezier patch definition

22

Bezier patches
● If curve A has n control points and

curve B has m control points then
A⊗B is an (n)x(m) matrix of
polynomials of degree max(n-1, m-1).
● ⊗ = tensor product

● Multiply this matrix against an
(n)x(m) matrix of control points and
sum them all up and you’ve got a
bivariate expression for a rectangular
surface patch, in 3D

● This approach generalizes to triangles
and arbitrary n-gons.

23

Tensor product

● The tensor product of two vectors is a
matrix.

● Can take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two

original expressions, so the cumulative polynomial
represents both original polynomials completely.

24

Continuity between Bezier patches

Ensuring continuity in 3D:
● C0 – continuous in position

● the four edge control points must match
● C1 – continuous in position and tangent

vector
● the four edge control points must match
● the two control points on either side of each

of the four edge control points must be
co-linear with both the edge point, and each
other, and be equidistant from the edge point

● G1 – continuous in position and tangent
direction the four edge control points must
match the relevant control points must be
co-linear Image credit: Olivier Czarny, Guido Huysmans. Bézier

surfaces and finite elements for MHD simulations.
Journal of Computational Physics
Volume 227, Issue 16, 10 August 2008 25

References

● Les Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● G. Farin, J. Hoschek, M.-S. Kim, Handbook
of Computer Aided Geometric Design,
North-Holland (2002)

26

